Kumpulan Contoh Soal Sistem Persamaan Linear Tiga Variabel dan Jawabannya
Contoh soal persamaan linear tiga variabel dan jawabannya – Contoh soal sistem persamaan linear tiga variabel akan memberikan anda kemudahan untuk memahami tentang bagaimana cara mengerjakan soal dengan persamaan dua variabel menggunakan perhitungan yang benar.
Sehingga anda akan dapat menemukan hasil atau jawaban dari pertanyaan tersebut.
SPLTV atau disebut dengan sistem persamaan linear tiga variabel merupakan sistem dari persamaan atau bentuk yang hubungannya sama dengan bentuk dari aljabar yakni tiga variabel.
Tentang Sistem Persamaan Linear Tiga Variabel
Daftar Isi
Daftar Isi
Nah pada pembahasan ini anda akan dibawa pada persoalan tentang bagaimana itu perhitungan persamaan tiga variabel dalam ilmu matematika.
Matematika merupakan mata pelajaran yang kebanyakan orang nih menjadi bingung, pusing dan bahkan membenci pelajaran yang satu ini karena dinilai cukup sulit untuk dimengerti.
Terlalu banyak rumus dan materi yang mengharuskan beberapa orang malas untuk mempelajarinya.
Nah salah satu materi yang harus anda kuasai adalah sistem persamaan dua variabel yang mana pada artikel ini dilengkapi dengan contoh soal sistem persamaan linear tiga variabel dan jawabannya menarik untuk anda coba.
Nah untuk lebih lengkapnya berikut ini akan dibahas lebih mendalam terkait dengan persamaan dua variabel.
Sistem Persamaan Linear Tiga Variabel
Seperti yang telah disebutkan di atas nih bahwa ketika membahas tentang persamaan linear maka anda akan berhubungan dengan istilah variabel yang mana istilah tersebut telah anda pelajari sejak SMP yang umumnya dinyatakan dengan x.
Untuk tiga variabel yang akan dibahas ini akan dinyatakan sebagai x, y dan z.
Adapun pada pembahasan sebelumnya Sistem persamaan linear dua variabel atau yang disingkat menjadi SPLDV ini adalah sistem persamaan atau bentuk aljabar yang memiliki dua variabel berpangkat satu yang jika digambarkan dalam grafik maka akan membentuk yang namanya garis lurus.
Ciri yang lain yaitu memiliki dua variabel dan kedua variabel tersebut memiliki derajat yang berpangkat satu.
Itulah ciri dari persamaan linear dua variabel agar anda dapat dengan mudah membedakan.
Beberapa contoh soal persamaan linear dua variabel nantinya akan membantu anda untuk lebih dalam mengetahui tentang ilmu ini.
Cara Menyelesaikan
Untuk bisa menyelesaikan contoh soal sistem persamaan linear tiga variabel dan jawabannya anda perlu memahami beberapa metode yang digunakan dalam perhitungan ini.
Metode yang dimaksud adalah metode substitusi, metode eliminasi dan metode gabungan.
1. Metode Subtitusi
Pada metode ini anda harus memilih persamaan yang paling sederhana untuk menyatakan salah satu variabel dalam bentuk fungsi variabel lainnya lalu kemudian bentuk fungsi yang anda peroleh akan disubtitusikan ke dua persamaan lainnya.
Lakukan hal yang sama setelah mendapatkan bentuk persamaan sistem linear dua variabel.
2. Metode Eliminasi
Untuk metode ini langkah pertama yang perlu anda lakukan adalah mengeliminasi salah satu variabel dengan menyamakan konstanta variabel yang ingin dieliminasi lalu.
3. Metode Gabungan
Terakhir adalah pada metode gabungan ini merupakan gabungan antara metode subtitusi dan eliminasi yang mana anda melakukan eliminasi salah satu variabel dengan menyamakan konstanta variabel yang akan anda eliminasi lalu lakukan metode eliminasi dan substitusikan nilai variabel yang diketahui pada salah satu persamaan linear dua variabel .
Nah itulah beberapa metode yang harus anda lakukan dalam contoh soal sistem persamaan linear tiga variabel dan jawabannya untuk anda ketahui.
Contoh Soal Persamaan Linear Tiga Variabel untuk Anda Ketahui
Soal 1
3x + 2y – z = 8
x – y + z = 4
2x + 3y + 2z = 1
Jawaban:
Kita akan mengalikan persamaan (1) dengan 2 dan persamaan (3) dengan -3, kemudian menjumlahkannya.
6x + 4y – 2z = 16 (1 x 2)
-6x – 9y – 6z = -3 (3 x -3)
-5y – 8z = 13 (Hasil penjumlahan)
Langkah 2: Eliminasi persamaan 1 dan 2
Mengalikan persamaan (1) dengan 1 dan persamaan (2) dengan -3, kemudian menjumlahkannya.
3x + 2y – z = 8 (1 x 1)
-3x + 3y – 3z = -12 (2 x -3)
5y – 4z = -4 (Hasil penjumlahan)
Sekarang kita memiliki sistem baru:
-5y – 8z = 13 (4)
5y – 4z = -4 (5)
x – y + z = 4 (2)
Langkah 3: Mengeliminasi variabel y pada persamaan (4) dan (5)
Kita akan menjumlahkan persamaan (4) dan (5).
-5y – 8z = 13 (4)
5y – 4z = -4 (5)
-12z = 9 (Hasil penjumlahan)
Dari hasil di atas, didapatkan z = -9/12 = -3/4
Langkah 4: Menggantikan nilai z pada persamaan (5) untuk mencari y
Kita akan menggantikan nilai z = -3/4 pada persamaan (5).
5y – 4(-3/4) = -4
5y + 3 = -4
5y = -4 – 3
5y = -7
y = -7/5
Langkah 5: Menggantikan nilai y dan z pada persamaan (2) untuk mencari x
Kita akan menggantikan nilai y = -7/5 dan z = -3/4 pada persamaan (2).
x – (-7/5) + (-3/4) = 4
x + 7/5 – 3/4 = 4
(5, 4) = 20
20x + 28 – 15 = 80
20x + 13 = 80
20x = 80 – 13
20x = 67
x = 67/20
Jadi, solusi dari sistem persamaan linear tersebut adalah x = 67/20, y = -7/5, dan z = -3/4.
Soal 2
2x + 3y – z = 7
4x – y + 2z = 1
x + 2y + 3z = 5
Jawaban:
Langkah 1: Gunakan persamaan (3) untuk mencari x
Gantikan nilai x pada persamaan (1) dan (2) dengan menggunakan persamaan (6):
2(5 – 2y – 3z) + 3y – z = 7 (1)
4(5 – 2y – 3z) – y + 2z = 1 (2)
Langkah 3: Sederhanakan persamaan
Sederhanakan persamaan (1) dan (2) dan kita akan memiliki persamaan baru:
10 – 4y – 6z + 3y – z = 7 (1)
20 – 8y – 12z – y + 2z = 1 (2)
Langkah 4: Sederhanakan lebih lanjut
Sederhanakan persamaan (1) dan (2) dan kita akan memiliki persamaan baru:
y – 7z = -3 (7)
7y – 10z = -19 (8)
Langkah 5: Gantikan nilai y pada persamaan (8)
Gantikan nilai y pada persamaan (8) menggunakan persamaan (7):
7(-y – 7z) – 10z = -19
7y + 49z – 10z = -19
7y + 39z = -19 (9)
Langkah 6: Gantikan nilai y pada persamaan (7)
Gantikan nilai y pada persamaan (7) menggunakan persamaan (9):
(-7z) – 7z = -3
7z – 7z = -3
0 = -3
Dari langkah 6, kita mendapatkan hasil yang tidak konsisten (0 = -3). Demikian pembahasan contoh soal sistem persamaan linear tiga variabel dan jawabannya semoga bermanfaat untuk anda.
Klik dan dapatkan info kost di dekat kampus idamanmu: